STT 1600 DEPARTMENTAL SYLLABUS

(Revised 1/2023)

TEXT: <u>Elementary Statistics Using Excel, Sixth Edition</u> by Mario F. Triola, (Pearson Addison Wesley).

COMPUTER LAB: 9 to 10 Excel labs during the semester.

WRIGHT STATE CORE: STT 1600 is a Core Element 2 (Mathematics) course

COORDINATOR: Julan Al-Yassin

Chapter/Section		Textbook Problems	Comments
1.1-1.3	1.1	1,2,5,6,10,11	Intro, statistical thinking,
Introduction	1.2	2,5,12,14,17,21,22,24,25	types of data, sampling
	1.3	9,11,12,13,21,22	, syprot or anim, running
2.1-2.4	2.1	1,2,3,8,9,11	Section 2.3 give examples of
Graphs	2.2	1,3,4,5,7	dotplots, scatterplots, and
- Transport	2.3	1,5,7,12,14	time series
	2.4	2,5,9	time sories
3.1-3.3	3.1	3,4,6,15,23	Skip mid-range, skip formula
Descriptive	3.2	1,6,15,41,42	3-5 and use only formula 3-4
Statistics	3.3	1,2,3,4,7,10,14,17,21,22,29	for std dev., skip coefficient
Statistics	3.5	1,2,3,4,7,10,14,17,21,22,29	of variation, skip
			Chebyshev's Theorem
4.1-4.4	4.1	5,6,13,14,21-24,28-30,33,34	Chebyshev s Theorem
Probability	4.2	1,2,5,9-14	
Trobability	4.3	3-5,13-16,17-20	
	4.4	1 ' '	
5.1-5.2	5.1	2,5-8,10,11,22,23,29 1,2,3,6,9,12,18	Introduce random variables
Discrete	5.2		and illustrate with binomial
Distributions	3.2	2,7,8,21-24,27	l .
Distributions			distribution
6.1-6.4	(1	2.0.17.22.27.26.20.45	Omit Poisson distribution
	6.1	3-8,17,22,25,36-38,45	Use Excel to compute normal
Normal	(2)	2 2 12 15 17 19 21 22	probabilities
Distribution	6.2	2,3,13-15,17,18,21,22	
	6.3	4,6	
7.1-7.2	6.4	3,5-7	
	7.1	2,13,14,17,19	Interpret C.I., skip
Confidence	7.2	9-14	determining sample size n
Intervals	0.1	0.2 (0.14.15.17.10.01.00.07.0(
8.1-8.3	8.1	2,3,6-8,14,15,17-19,21-23,25,26	Skip power
Hypothesis	8.2	1,2,9,10,13,15,16,23,26	
Testing	8.3	5,7,13-17	
9.2	9.2	1,2,5,6,8-10	Part 1 of section 9.2 only
2-Sample t-Test			
10.1-10.2	10.1	1-11	Skip Part 2 of section 10-1.
Correlation and		(Skip hypothesis testing for	Use the formula on page 507
Regression		correlation – just plot data and	for correlation r.
		compute r)	Use a handout to illustrate
	10.2	1-8	correlation and regression
		444	examples.
12.1	12.1	3-7,9,10	Give printout of an ANOVA
One-Way			example and multiple
ANOVA			comparisons
11.2	11.2	6-9,11	2x2 tables only (1 df)
(Optional)			
Chi-Square Test			

It is also recommended that the students are shown at least one journal article with an emphasis on how to interpret the statistical analysis and in particular, p-values. This can be made into a lab, group, or homework assignment, at the Instructor's discretion.

UNIVERSITY OBJECTIVE AND CORE GOALS

This course will meet university objective 2: "demonstrate mathematical literacy". The Core learning outcomes in Element 2 that we will meet are below.

2. Mathematics	a. Identify the various elements of a mathematical or statistical model
The foundational skills required to use and interpret mathematics and statistics	 Determine the values of specific components of a mathematical/statistical model or relationships among various components
	c. Apply a mathematical/statistical model to a real-world problem
	 d. Interpret and draw conclusions from graphical, tabular, and other numerical or statistical representations of data
	 Summarize and justify analyses of mathematical/statistical models for problems, expressing solutions using an appropriate combination of words, symbols, tables or graphs

ODS 180 University Hall, (937) 775-5680 http://www.wright.edu/diversity-and-inclusion/disability-services